344 research outputs found

    Reading out a spatiotemporal population code by imaging neighbouring parallel fibre axons in vivo.

    Get PDF
    The spatiotemporal pattern of synaptic inputs to the dendritic tree is crucial for synaptic integration and plasticity. However, it is not known if input patterns driven by sensory stimuli are structured or random. Here we investigate the spatial patterning of synaptic inputs by directly monitoring presynaptic activity in the intact mouse brain on the micron scale. Using in vivo calcium imaging of multiple neighbouring cerebellar parallel fibre axons, we find evidence for clustered patterns of axonal activity during sensory processing. The clustered parallel fibre input we observe is ideally suited for driving dendritic spikes, postsynaptic calcium signalling, and synaptic plasticity in downstream Purkinje cells, and is thus likely to be a major feature of cerebellar function during sensory processing

    Predicting the synaptic information efficacy in cortical layer 5 pyramidal neurons using a minimal integrate-and-fire model

    Get PDF
    Synaptic information efficacy (SIE) is a statistical measure to quantify the efficacy of a synapse. It measures how much information is gained, on the average, about the output spike train of a postsynaptic neuron if the input spike train is known. It is a particularly appropriate measure for assessing the input–output relationship of neurons receiving dynamic stimuli. Here, we compare the SIE of simulated synaptic inputs measured experimentally in layer 5 cortical pyramidal neurons in vitro with the SIE computed from a minimal model constructed to fit the recorded data. We show that even with a simple model that is far from perfect in predicting the precise timing of the output spikes of the real neuron, the SIE can still be accurately predicted. This arises from the ability of the model to predict output spikes influenced by the input more accurately than those driven by the background current. This indicates that in this context, some spikes may be more important than others. Lastly we demonstrate another aspect where using mutual information could be beneficial in evaluating the quality of a model, by measuring the mutual information between the model’s output and the neuron’s output. The SIE, thus, could be a useful tool for assessing the quality of models of single neurons in preserving input–output relationship, a property that becomes crucial when we start connecting these reduced models to construct complex realistic neuronal networks

    Are Human Dendrites Different?

    Get PDF
    The first patch-clamp recordings from the dendrites of human neocortical neurons have recently been reported by Beaulieu-Laroche et al. and Gidon et al. These studies have shown that human dendrites are electrically excitable, exhibiting backpropagating action potentials and fast dendritic calcium spikes. This new frontier highlights the potential for interspecies differences in the biophysics of dendritic computation

    A synaptic learning rule for exploiting nonlinear dendritic computation

    Get PDF
    Information processing in the brain depends on the integration of synaptic input distributed throughout neuronal dendrites. Dendritic integration is a hierarchical process, proposed to be equivalent to integration by a multilayer network, potentially endowing single neurons with substantial computational power. However, whether neurons can learn to harness dendritic properties to realize this potential is unknown. Here, we develop a learning rule from dendritic cable theory and use it to investigate the processing capacity of a detailed pyramidal neuron model. We show that computations using spatial or temporal features of synaptic input patterns can be learned, and even synergistically combined, to solve a canonical nonlinear feature-binding problem. The voltage dependence of the learning rule drives coactive synapses to engage dendritic nonlinearities, whereas spike-timing dependence shapes the time course of subthreshold potentials. Dendritic input-output relationships can therefore be flexibly tuned through synaptic plasticity, allowing optimal implementation of nonlinear functions by single neurons

    Microcircuit Rules Governing Impact of Single Interneurons on Purkinje Cell Output In Vivo

    Get PDF
    The functional impact of single interneurons on neuronal output in vivo and how interneurons are recruited by physiological activity patterns remain poorly understood. In the cerebellar cortex, molecular layer interneurons and their targets, Purkinje cells, receive excitatory inputs from granule cells and climbing fibers. Using dual patch-clamp recordings from interneurons and Purkinje cells in vivo, we probe the spatiotemporal interactions between these circuit elements. We show that single interneuron spikes can potently inhibit Purkinje cell output, depending on interneuron location. Climbing fiber input activates many interneurons via glutamate spillover but results in inhibition of those interneurons that inhibit the same Purkinje cell receiving the climbing fiber input, forming a disinhibitory motif. These interneuron circuits are engaged during sensory processing, creating diverse pathway-specific response functions. These findings demonstrate how the powerful effect of single interneurons on Purkinje cell output can be sculpted by various interneuron circuit motifs to diversify cerebellar computations

    Millisecond Coupling of Local Field Potentials to Synaptic Currents in the Awake Visual Cortex

    Get PDF
    The cortical local field potential (LFP) is a common measure of population activity, but its relationship to synaptic activity in individual neurons is not fully established. This relationship has been typically studied during anesthesia and is obscured by shared slow fluctuations. Here, we used patch-clamp recordings in visual cortex of anesthetized and awake mice to measure intracellular activity; we then applied a simple method to reveal its coupling to the simultaneously recorded LFP. LFP predicted membrane potential as accurately as synaptic currents, indicating a major role for synaptic currents in the relationship between cortical LFP and intracellular activity. During anesthesia, cortical LFP predicted excitation far better than inhibition; during wakefulness, it predicted them equally well, and visual stimulation further enhanced predictions of inhibition. These findings reveal a central role for synaptic currents, and especially inhibition, in the relationship between the subthreshold activity of individual neurons and the cortical LFP during wakefulness

    Active dendrites enable strong but sparse inputs to determine orientation selectivity

    Get PDF
    The dendrites of neocortical pyramidal neurons are excitable. However, it is unknown how synaptic inputs engage nonlinear dendritic mechanisms during sensory processing in vivo, and how they in turn influence action potential output. Here, we provide a quantitative account of the relationship between synaptic inputs, nonlinear dendritic events, and action potential output. We developed a detailed pyramidal neuron model constrained by in vivo dendritic recordings. We drive this model with realistic input patterns constrained by sensory responses measured in vivo and connectivity measured in vitro. We show mechanistically that under realistic conditions, dendritic Na+ and NMDA spikes are the major determinants of neuronal output in vivo. We demonstrate that these dendritic spikes can be triggered by a surprisingly small number of strong synaptic inputs, in some cases even by single synapses. We predict that dendritic excitability allows the 1% strongest synaptic inputs of a neuron to control the tuning of its output. Active dendrites therefore allow smaller subcircuits consisting of only a few strongly connected neurons to achieve selectivity for specific sensory features.</jats:p

    One rule to grow them all: A general theory of neuronal branching and its practical application

    Get PDF
    Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture the general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of dendritic arborizations as locally optimized graphs. Inspired by Ramon y Cajal's laws of conservation of cytoplasm and conduction time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This approach allows us to generate synthetic branching geometries which replicate morphological features of any tested neuron. The essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a single parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines a neuron's electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be directly attributed to developmental processes or a neuron's computational role within its neural circuit. The simulations presented here are implemented in an open-source software package, the "TREES toolbox," which provides a general set of tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any particular cell group and an approach for a model-based supervised automatic morphological reconstruction from fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures. They also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing realistic synthetic neural networks

    A circle-based method for detection of neural fibre cross-sections in classically stained 2D electron micrographs

    Get PDF
    Recent developments in electron microscopy now permit the unambiguous reconstruction of even the smallest neural fibres by human experts. However, manual reconstruction of an interesting volume of neural tissue would take thousands of person-years. Techniques to automate such reconstruction are therefore highly desirable and currently under active development. Here we present a novel circle-based technique and assess its performance on classically stained electron micrographs of the molecular layer of mouse cerebellar cortex. We compare its performance to a recently published pixel-based classifier (ilastik), selected because a similar random forest classifier from the same group has shown promising results on images of neural tissue. The performance of our algorithm and that of ilastik are similar, achieving approximately 50% on an overlap-based f-measure

    Wobbling Motion in Atomic Nuclei with Positive-Gamma Shapes

    Get PDF
    The three moments of inertia associated with the wobbling mode built on the superdeformed states in 163Lu are investigated by means of the cranked shell model plus random phase approximation to the configuration with an aligned quasiparticle. The result indicates that it is crucial to take into account the direct contribution to the moments of inertia from the aligned quasiparticle so as to realize J_x > J_y in positive-gamma shapes. Quenching of the pairing gap cooperates with the alignment effect. The peculiarity of the recently observed 163Lu data is discussed by calculating not only the electromagnetic properties but also the excitation spectra.Comment: 11 pages, 6 figure
    • …
    corecore